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A semi-empirical model is presented for the calculation of the overall orientation in nematic aramid solutions 
during the fibre spinning process. The model describes the effect of coagulation-bath temperature, polymer 
concentration, and draw ratio on the modulus of poly(p-phenylene terephthalamide) yarns. The results 
of the model are compared with experimental results for the E modulus of as-spun aramid fibres. 
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INTRODUCTION 

Sulphuric acid solutions of the fully aromatic polyamide 
(or aramid) PPTA are used to produce high-modulus, 
high-tenacity fibres. Figure 1 shows the aramid 
polymers poly(p-phenylene terephthalamide) (PPTA) 
and poly (4,4'-benzanilidylene terephthalamide ) (DABT). 
These polymers form a lyotropic nematic phase between 
about 8 and 20wt% polymer concentration in 
concentrated (~>99.8%) H2SO 4. At ~20wt% the 
solubility limit is reached. The DABT polymer is used 
for experimental purposes, as it has the advantage that 
it does not form a crystal-solvate phase at room 
temperature, even for the highest concentration. 

Figure 2 shows schematically an experimental set-up 
for the dry-jet wet spinning process. The aramid solution 
is extruded through the spinneret and stretched in the 
air gap above the coagulation bath. In the coagulation 
bath the sulphuric acid is removed and the aramid fibre 
is formed. In the arrangement shown, the winding tension 
can be adjusted separately. 

For fibre spinning, usually a concentrated solution of 
PPTA of ~ 19.6 wt% is used. The temperature of the 
solution is ~80°C. In such solutions a high degree of 
molecular orientation of the polymer chains with 
respect to the local director can be expected. This 
orientation of the polymer chains with respect to the 
local director is modelled here using a theory analogous 
to the Maier-Saupe model for low-molecular-weight 
nematics L 2. 

During the spinning process the local directors are 
aligned in the direction of flow by the shear flow in the 
capillaries of the spinneret and by the elongational flow 
in the entrance zone above the spinneret and in the air 
gap. The high degree of orientation of the director thus 
obtained, together with the high degree of local molecular 
(orientational) order, implies that the polymer chains are 
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highly oriented in the direction of flow. Assuming that 
this orientational order is merely 'frozen-in' during 
the coagulation process, the high modulus of the aramid 
fibre obtained can be predicted quantitatively using some 
simple models for the molecular orientation in the 
lyotropic liquid-crystalline solution. 

In the following, the mean-field model for the 
orientational order with respect to the director is briefly 
reviewed. To describe the degree of director orientation 
due to the flow history, an affine deformation model is 
used. Finally, a model predicting the modulus of aramid 
yarns from the average crystallite orientation 3 is used to 
make the connection from molecular order to mechanical 
yarn properties. Experimental results on the yarn 
modulus are compared with this simple model as a 
function of polymer concentration, draw ratio in the air 
gap, and coagulation bath temperature. 

It is noted that this approach is not intended to 
provide a complete constitutive equation to describe 
the flow behaviour of a lyotropic nematic main-chain 
polymer solution; such an approach has been provided 
by the theory of Doi and Edwards 4, with some recent 
additional contributions by Marucci 5 and Larson 6. The 
present approach is essentially a semi-empirical one 
where the various parts of the model are justified by the 
surprisingly good agreement with experimental results. 

MEAN-FIELD MODEL FOR LOCAL 
ORIENTATIONAL ORDER 

In previous publications 1'2 a mean-field model analogous 
to the Maier-Saupe model for low-molecular-weight 
nematics 7 was used to describe the local molecular 
orientational order in a lyotropic polymeric system. Here 
this model is briefly reviewed and some useful 
asymptotic relations for the high orientational order limit 
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Figure 1 The aramid polymers poly(p-phenylene terephthalamide) 
( PPTA ) and poly (4,4'-benzanilidylene terephthalamide ) (DABT) 
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Figure 2 Schematic drawing of the aramid fibre spinning process 
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where Z is the partition function, given by 

Z = d(cos fl) exp (P2)P2  (cos fl) (4) 
-1  

Substituting equations (3) and (4) into equation (2) leads 
to a self-consistent equation for ( P 2 )  as a function of 
kT/e, the reduced temperature. For all temperatures, 
( P 2 )  = 0 (the isotropic phase) is a possible solution to 
this equation. However, by demanding that the free 
energy should be minimal, a first-order phase transition 
is found to a solution with ( P 2 )  = 0.38 at kT/e, = 0.22. 
Further reduction of the temperature leads to an increase 
in ( P2 ) ; see Figure 4. For temperatures well below T,i, 
the order parameter (P2) in the Maier-Saupe model is 
given approximately by 

kT 
( P 2 )  ~ 1 -- (5) £ 

fi 

D 
, I  

I 
, Director  

are given. The model allows the prediction of the 
molecular degree of orientational order with respect to 
the (local) director, as shown in Figure 3, where fl is the 
angle of the polymer chain tangent with respect to the 
director. 

In the well-known Maier-Saupe model for low- 
molecular-weight nematics, use is made of an effective 
mean-field potential of the form 

U = - e ( P 2 ) P 2 ( c o s  fl) (1) 

where P2(cos fi) = ½(3 cos 2 fl - 1 ) is the second-order 
Legendre polynomial of cos fl, and ( P 2 )  is the average 
of P2(cosfl) taken over the molecular orientational 
distribution function f(fl),  i.e. 

( P 2 )  = d(cos fl) f(fl)P2 (cos fl) (2) 
-1 

The value of ( P 2 )  is 0 for an isotropic phase and 1 for 
perfect orientational order along the director. 

In a nematic phase the orientational distribution has 
a maximum at angles fl = 0 and fl = n. The distribution 
function using Boltzmann statistics is given by 

1 - U  = 1 expF ~(p2)P2(cosfl)] f(fl) = zeXP( kT ) kkT J 
(3) 

Figure 3 Local orientational order in the nematic phase of worm-like 
polymer chains, showing the angle fl with respect to the director h 
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Figure 4 Theoretical curves of the ( P2 ) order parameter as a function 
of the 'reduced temperature' kT/e. ( - - - ) ,  Standard Maier-Saupe 
mean-field theory; ( - - ) ,  adapted mean-field theory for polymers, 
with the position of the phase transition scaled to coincide with the 
standard theory for easy comparison 
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Figure 5 Experimental values (I-q) of the dielectric anisotropy (for 
optical frequencies) as a function of temperature for a 10.8 wt% DABT 
solution, M w = 42 000. ( - - ) ,  Standard Maier-Saupe theory; ( ) 
mean-field theory for polymers described in the text 

To extend the standard model given above to the case 
of lyotropic polymers, the effects of molecular flexibility 
and polymer concentration are included in the strength 
of the potential e, using 

= ~*¢2LZ(T)  (6) 

where e* is a constant determining the absolute 
temperature scale, c is the concentration of the polymer 
in the solution, and L (T) is the temperature-dependent 
'contour projection length', which is the average length 
of the projection of the worm-like polymer chain along 
the direction of the first segment. For rod-like polymer 
chains, L ( T )  is just the end-to-end distance Lc or the 
contour length. For coil-like polymer chains, L ( T )  is 
equal to the persistence length Lp. Using a simple 
potential of the form 

U~ = A cos 0 (7) 

to describe the bending energy of the worm-like chains, 
where 0 is the angle between subsequent 'segments' of 
the chain, and taking the continuous limit, the contour 
projection length L ( T )  is given by 1'2 

1 - exp(-L~T/LpTp)  
L ( r ) =  Lp (8) 

r/wp 
Here L, is the contour length and Lp is the persistence 
length at temperature Tp. Usually Tp will be room 
temperature, depending on the conditions used to 
m e a s u r e  Lp. Observe that 
and/or  low temperature, 
temperature and/or  high 
reduces to 

indeed for low contour length 
L ( T )  = L c and that for high 
contour length, equation (8) 

L ( T )  ~ LpTp/T (9) 

i.e. the persistence length at temperature T. Note that 
the persistence length is inversely proportional to the 
absolute temperature. This is a consequence of the use 
of a potential to describe the bending of the worm-like 
chain, equation (7). 

By substituting equations (6) and (8) into the standard 
Maier Saupe model, ( P 2 )  c a n  be calculated as a 
function of polymer concentration and temperature. 
Figure 4 shows the result for a high contour length Lc 
(the continuous curve). The ordinate is scaled to allow 
comparison with standard Maier Saupe theory. It is 

observed that ( P 2 )  increases more rapidly for polymer 
chains with decreasing temperature, due to the effect 
of chain-stiffening (the persistence length increases). In 
Figure 5 the models are compared with experimental 
results for the anisotropy of the dielectric constant Ae 
(at optical frequencies ), which is proportional to ( P 2 )  : 

Ae = Aeo(P2) (10) 

The unknown constant Ae o is the anisotropy that would 
be found in the case of perfect molecular orientation. The 
results in Figure 5 were obtained by measuring the 
birefringence of an aramid solution with an Abbe 
refractometer; for further details see ref. 2. 

Good agreement is observed with the authors'  model 
that includes the effect of temperature-dependent chain 
flexibility. However, the scatter in the experimental 
results does not allow an unambiguous choice between 
the two mean-field models to be made, due to the fact 
that the exact value of Ae 0 is unknown. 

The combined effects of polymer concentration and 
molecular weight are demonstrated in Figure 6 where 
experimental and theoretical results for the nematic- 
isotropic transition temperature (the clearing tempera- 
ture) are shown. The values of clearing temperature were 
obtained using a polarizing microscope and a hot stage. 
The values for T.i shown are at 50% phase separation; 
the biphasic gap was ~5°C. 

Of course, the absolute temperature scale has to be 
determined from the experimental results. For this 
purpose the filled point in Figure 6 (at c = l l wt%, 
T,i = 98°C) was used for the calculation of e* : 

e* - kT"i ( 11 ) 
0.22L 2 ( T.i )c 2 

This equation is immediately obtained by combining 
equation (6) with the value of kT/e = 0.22 at the phase 
transition. Equation (11), now that the value of e* is 
known, is used to calculate the influence of concentration 
and molecular weight on the clearing temperature T,i. 
The curves drawn in Figure 6 represent the theory; good 
agreement with the experimental results is observed. Both 
the influence of concentration and that of molecular 
weight on the clearing temperature are described 
adequately by this model. A single value of the parameter 
e* is used for both curves. The influence of molecular 
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Figure 6 Experimental values (A, ~) of clearing temperature Tni of 
two PPTA samples as a function of polymer concentration. (•) ,  Data 
point used to determine e* (see text) ; ( ) modified mean-field theory 
for lyotropic polymers 
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weight is taken into account via the contour length L¢ 
in equation (8). We used Mw values obtained from an 
empirical calibration curve to calculate L¢. 

In the following the temperature and concentration 
dependence of ( P 2 )  as given by our model is used to 
predict the molecular degree of orientation during the 
spinning process. 

For practical purposes it is often convenient to use 
some approximate relations for Tni and ( P z ) .  Equation 
(11 ) may be written as 

Tni ~ Ac ~' (12a) 

where A = 7 6 K ,  c is in wt%, and ~=0 .66 .  From 
equations (5), (9) and (11), we find 

( P 2 )  ~ 1 --  0 . 2 2 ( T / T n i )  3 (12b) 

The value of 0.66 for ct in equation (12a) is obtained if 
the influence of contour length is disregarded in equation 
(8). For standard solutions with a contour length 
L~ ~ 150 nm this is a good approximation. The value for 
A in equation (12a) is derived from the fit with the 
experimental data in Figure 6 (the filled point). The T 3 
term in equation (12b) is due to the L2(T) term in 
equation (6) combined with the linear term in T in 
equation (5). Note that equation (12b) is valid only in 
the limit of high orientational order, i.e. for temperatures 
well below T,~ and for sufficiently high molecular weights. 
In aramid fibre spinning experiments these requirements 
are usually fulfilled. The extrapolated value of Tn~ at a 
concentration of 19.8 wt% is ~ 545 K, while the spinning 
temperature is around 350 K. The contour length L~ is 
on average about five times Lp, so the exponential term 
in equation (8) can be ignored. 

AFFINE DEFORMATION MODEL FOR 
AVERAGE DIRECTOR ORIENTATION 

In this section a model is introduced that allows the 
calculation of the degree of director orientation as a 
function of external flow fields. First some experimental 
results on the orientation of lyotropic DABT solutions in 
H 2 S O  4 using a simple shear geometry will be discussed. 
The experimental results for simple shear can be 
described by an affine deformation model, which is then 
also used for elongational flow, to allow the calculation 
of the director orientation during fibre spinning. 

In a previous publication s, results were presented from 
synchrotron X-ray scattering on DABT solutions during 
simple shear flow. The measured 'order parameter' Sex p 
is the average of P z ( c o s f l )  o v e r  the experimental 
orientational distribution of the 003 meridional reflection. 

The experimental 'order parameter'  S~x p is influenced 
by (1) the degree of local molecular order with respect 
to the director, (2) the degree of director orientation, 
and (3) the degree of lateral correlation between the 
polymer chains. This is described by the equation 

S e x  p = KP2(P2)  (13) 

Here the local molecular orientational order is given by 
( P 2 )  and the macroscopic director orientation is given 
by P2. The additional azimuthal broadening due to 
lateral correlation is described by K. This factor K can 
be imagined to be the apparent order parameter that 
would be found for a sample with perfect orientational 
order in which the meridional reflections are still 
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Experimental order parameter So,p from synchrotron X-ray 
scattering as a function of shear strain ), for a shear rate of 0.25 s 1. 
( l l ,  + ) Different experiments on the same DABT solution, 20 wt%, 
Mw = 30000, 20°C, showing the experimental scatter of the data;  
( ) simple-shear affine deformation model 
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Figure 8 Steady-state experimental order parameter Sex p from 
synchrotron X-ray scattering as a function of shear rate ~,, using the 
same DABT sample as for Figure 7 

broadened by the lateral disorder along the molecular 
c-axis 9. 

It is now assumed that the product K ( P 2 )  is a local 
molecular property that is independent of external flow 
fields. Equation (13) shows that Sex p and P2 are then 
proportional. By measuring Sexp it is possible to derive 
information o n  P2 .  

Figure 7 shows the development of Sexp as a function 
of shear strain 7 for a shear rate ~, of 0.25 s -1. The 
experimental orientation Sex p increases with 7, levelling 
off to a value of about 0.75. Figure 8 shows the 
steady-state results for Sexp (i.e. for large applied strains 
7) as a function of shear rate 9- It appears that the ultimate 
large strain value of Sexp is more or less independent of 
~?. As it is known from e.g. polarization microscopy that 
at high shear rates the director is fully aligned along the 
direction of flow (i.e. P2 = 1 ), it is concluded from Figure 
8 that the value of K ( P 2 )  is ~0.73. This level for Se,p 
apparently corresponds to the case P2 = 1. It can be 
estimated from the mean-field model in the previous 
section that ( P 2 )  should be ~0.96 (using 20°C, 
20wt%).  This means that the value of K is ~0.77, so 
broadening of the meridional reflections due to lateral 
disorder of the polymer chains appears to be an 
important factor. This value of K is in reasonable 
agreement with an estimate obtained by visually 
comparing the azimuthal half-widths of meridional and 
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Figure 9 Affine simple-shear deformation computed for a shear strain 
? = x / d ,  indicating how a random director field is oriented and 
stretched due to the application of an affine simple shear deformation 

equatorial reflections : K = 0.82 _ 0.05. The curve drawn 
in Figure 7 shows the development of the director order 
P2 as a function of 7 from an affine simple-shear 
deformation model. Reasonable agreement is observed 
with the experimental results. 

Deformation models in which the sample is deformed 
uniformly according to the macroscopic deformation of 
the sample are referred to as affine models. The effect of an 
affine deformation in simple shear on the director field 
is shown schematically in Figure 9. All coordinates are 
transformed as prescribed by the overall deformation 
tensor of the sample" 

t 

[!00,, oO ][] z (14) 

Using a numerical model it is possible to calculate the 
average director orientation as a function of shear strain 
7; see Figure 10. 

The numerical method consists in taking a unit vector 
from an isotropic director distribution, transforming it 
according to equation (14) and subsequently calculating 
the P2 (cos 0) value (where 0 is defined with respect to 
the direction of flow along the z-axis). This process is 
repeated until sufficient accuracy for P2 has been 
obtained, e.g. 1000 times for each strain value 7. For 
more details see ref. 8 or 10. 

Apart from P2 with respect to the direction of flow, 
Figure 10 also shows D (the average of 3 sin 2 0 cos (2~o)/2, 
where 0 is the angle with respect to the z-axis and ~0 is 
the azimuthal angle with respect to the x-axis), the 
macroscopic 'flatness order parameter'. That D is not 
zero indicates that the director orientation distribution 
is not completely axially symmetric. This also means that 
equation (13) is an approximation, as the influence of 
is not taken into account. It is noted however that the 
value of D remains small, so this will not lead to a serious 
error. The numerical results for P2 and D can be 
approximated by the following analytic expressions: 

~ ( 7 ) =  1 27£+90  ~ (15a) 

D ( 7 )  = 7 (1  - e - 3 / 2 ~ )  ( 1 5 b )  
7 + 10(1 - e -3 /2~)  

These expressions were obtained by analysing the 
asymptotic behaviour of the numerical results and then 
using a trial-and-error method. Equations (15a,b) are 
also shown in Figure 10 (dashed lines) to demonstrate 
the good agreement with the numerical results. 

For modelling the spinning process, the equivalent of 
this affine deformation model for simple shear is used, 
but now for elongational flow. Unlike the case of simple 
shear, the calculation can be done analytically leading 
to the Kuhn and Griin equation11 : 

2 a  3 + 1 3 a  3 
P2(a) - 2 ( a 3 ~ )  2(a3 _ 1)3/2 atan{(a 3 - 1) 1/2} 

(16) 

where a - 1  + 7 is the degree of elongation (i.e. 
x '=  x/x/a, y '=  y/x/a, and z ' =  za). Of course, in this 
case D = 0, from symmetry arguments. The Kuhn and 
Griin equation was originally derived for the change in 
orientational order in an ideal rubber due to elongation. 
Of course, exactly the same result is obtained if uniaxial 
elongation instead of simple shear is used in equation 
(14). This was used to test the computer program. 

The result for elongation is also shown in Figure 10 
by the continuous curve. It is of interest to study the 
asymptotic behaviour of equations (15a) and (16) for 
large strains : 

simple shear: 
3 

P2(7) = 1 - (17a) 
27 

elongation : 
3/~ 

Pz(7) = 1 - - - -  (17b) 
473/2 

Note the higher exponent for 7 in the case of elongation, 
which is caused by the radial contraction (1 / \ / a ) .  The 
difference in the exponents explains the general 
observation that elongational flow is more efficient than 
simple shear flow for obtaining a high degree of director 
orientation and corresponding high anisotropy of the 
mechanical properties 12. 
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Figure 10 Calculated values of the director order parameters P2 ( + ) 
a n d / )  ( <> ) from simple-shear affine deformation, at shear strain 7 (see 
Figure 9). The elongational strain a in equation (16) is 1 + y. ( ), 
Affine elongation ; ( -  - - )  analytic approximations given by equations 
(15a, b) 
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OVERALL ORIENTATIONAL ORDER AS A 
FUNCTION OF TEMPERATURE, POLYMER 
CONCENTRATION, AND DRAW RATIO 

Using the equations describing the molecular and the 
director order parameters, it is now possible to calculate 
the overall degree of orientational order as a function of 
temperature, polymer concentration, and draw ratio. The 
effects of temperature and concentration are described 
by the mean-field model. The influence of the draw ratio 
is described by the Kuhn and Griin equation. The central 
equation describing the overall orientational order is 

(P2)  = P2(P2)  (18) 

analogous to equation (13 ). Note that here the K factor 
is absent, as the true overall molecular orientation is 
involved and not the experimentally measured half-width 
of the meridional 003 reflection that is broadened by the 
lateral molecular (dis)order. A reasonable estimate for 
(P2)  as a function of temperature and concentration 
can be obtained from equations (12a,b). The value of P2 
as a function of draw ratio can be obtained from equation 
(16). 

For modelling the spinning process, a certain degree 
of pre-orientation in the solution is postulated, due to 
the spinneret (i.e. by the entrance zone of the die and 
the Poiseuille flow in the capillary). To simplify matters, 
the influence of the entrance zone and the capillary will 
be described by an 'effective pre-elongation'. No attempt 
is made to predict the average degree of director 
orientation due to the spinneret geometry. This 
semi-empirical approach means that the elongation a in 
equation (16) is written as 

a = DRpreDRair.gap (19) 

Here DRair.gap is the draw-down applied below the 
spinneret, which can be calculated from the winding 
speed and the throughput of the spinning pump, and 
DRp,¢ is the equivalent draw-down that would be 
required to obtain the same degree of director orientation 
as that caused by the entrance zone and the capillary of 
the die. 

To analyse the spinning results, E-modulus curves as 
a function of draw ratio (DRair.gap), polymer concen- 
tration, and coagulation bath temperature are fitted to 
the affine deformation model using two parameters, 
namely DRpr e and (P2).  The DRpr e value contains 
information on the degree of orientation immediately 
below the capillary in the spinneret. The experimental 
(fitted) values of (P2)  are compared with the theoretical 
mean-field results. 

The use of equation (19) may be found objectionable, 
as DRpr ~ is an ad hoc correction by which various 
experimental problems are 'swept under the carpet'. For 
instance, if there is some slippage compared with the 
affine model, this will also be absorbed by the DRpr e 
factor. Alternatively, equations (18) and (19) can be 
regarded as a method of fitting the experimental results 
so as to obtain a value for (P2)  which can then be 
compared with the mean-field model. 

ORIENTATIONAL ORDER AND FIBRE 
MODULUS 

To calculate the fibre modulus from the overall molecular 
orientation in the solution, a mechanical model 3 is used. 
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This model provides a relation between the initial E 
modulus and the average degree of crystallite orientation 
(sin 2 (0))or in the fibre: 

1 1 (sin2 (O))cr 
- + ( 2 0 )  

E e 3 2g 

Here E is the fibre modulus, e3 is the chain modulus 
(~240GPa for PPTA), and g is the shear modulus 
( ~ 2 G P a  for PPTA). The degree of crystallite 
orientation can be determined using the azimuthal 
orientation of the equatorial or the meridional reflections 
of the fibre X-ray diffraction pattern. In the case of 
equatorial reflections the factor K, describing the lateral 
disorder (equation (12)), is 1, due to the crystalline 
structure of the fibre. 

To predict the fibre modulus from the overall degree 
of orientation in the solution, it is now postulated that 
the crystallite orientation is given by 

(sin2(O))~, = 2( 1 -- (P2))  (21) 

In equation (21) it is assumed that the overall degree of 
orientation obtained in the fibre is the same as the overall 
degree of orientation in the solution. This implies that 
there is no influence of the coagulation process on the 
overall average degree of orientation. The validity of this 
approach will be discussed further in the next section. 

COMPARISON WITH EXPERIMENTAL 
RESULTS FROM YARN SPINNING 

To test the model described in the previous sections, 
several spinning experiments were carried out using a 
small spinning machine. The general principle is shown 
in Figure 2. The coagulation bath temperature, the 
polymer concentration, and the draw-down in the air 
gap were varied independently. 

The effect of winding tension was also studied, showing 
an increase in fibre modulus with increasing winding 
tension. This will not be discussed further here. In order 
to test the theory, the experimental results for zero 
winding tension are used. The use of the coagulation 
bath temperature rather than the spinning temperature 
(at the spinneret) is motivated by the fact that the 
exchange of heat with the coagulation bath is a very 
rapid process. This means that the temperature of the 
polymer solution during coagulation is determined by 
the temperature of the coagulation bath. 

In Figure 11 the initial fibre modulus E i is shown as 
a function of draw ratio for three polymer concentrations 
at a constant coagulation bath temperature of 3.6°C. In 
Figure 12 the initial fibre modulus Ei is shown as a 
function of draw ratio for three coagulation bath 
temperatures at a constant polymer concentration of 
19.8 wt%. 

Ignoring the scatter in the experimental results, which 
is caused by the difficulty in maintaining zero winding 
tension, the curves drawn from the affine deformation 
model (equations (16), ( 18 ) and (19)) describe the results 
quite well. Deviations of the winding tension always cause 
an increase in the modulus, so the experimental results 
with the lowest E modulus are the most reliable. 

Table 1 shows the values for DRpr e (the 'effective 
pre-draw') in equation (18) and the values of (P2)  in 
equation ( 17 ) that are used to obtain the curves in Figures 
11 and 12. The calculated values of (P2)  from the 
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Figure 11 Initial E modulus of PPTA yarns as a function of draw 
ratio in the air gap for the polymer concentrations shown (wt% in 
99.8% HzSO4) at a coagulation bath temperature of 3.6°C; 
DRvre = (V)  3, (A)  4.5, ( + ) 6. ( ) Affine deformation model 

n 

(.9 

i i i  

90 

80- 

70- 

60- 

50- 

40 

÷ 

/ / /  . 2 s o c  
/ / /  , v s s  °c 

3 5 7 ~) 11 

DRAIR-GAP 

Figure 12 Initial E modulus of PPTA yarns as a function of draw 
ratio in the air gap for coagulation bath temperatures as shown for a 
19.8 wt% PPTA solution in 99.8% H2804; DRpro = 8 in all cases. 
( ), Affine deformation model 

Table 1 Experimentally fitted values of (P2)  and DRpre using the 
affine deformation model, and the theoretical values of (P2)  from the 
mean-field model. The (P2)  values are also expressed in terms of a 
maximum modulus, using equations (20) and (21) 

Experiment Theory 

C Tbath Emax Emax 
(wt%) (°C) DRp,e (P2)  (GPa) (P2)  (GPa) 

18.0 3.6 3 0.950 80 0.965 100 
18.9 3.6 4.5 0.954 85 0.968 106 
19.8 3.6 6 0.958 90 0.971 111 

19.8 5 8 0.958 90 0.971 110 
19.8 25 8 0.945 75 0.963 98 
19.8 55 8 0.933 65 0.950 81 

mean-field model are also given. These calculated values 
are from the full numerical treatment; however, it may 
be shown that equations (12a,b) give nearly the same 
values of ( P 2 ) "  

From Table 1 it is observed that the experimentally 
determined influences of polymer concentration and 
coagulation bath temperature are described quite well by 

the mean-field model. Although the absolute value of the 
E modulus is not predicted very accurately, it should be 
realized that the theory has to extrapolate the T,i value 
to concentrations well above the regime in which 
experimental data are available. Considering this 
limitation, it is observed that the variation in the 
theoretical ( P z )  value is in good agreement with the 
variation in ( P 2 )  obtained by fitting the experimental 
data to the affine deformation model. Also, the model 
assumes that the orientational order hardly changes 
during the coagulation process. From the nearly 
quantitative agreement with the experimental data for 
the maximum modulus, this somewhat questionable 
simplification would seem to be more or less correct. It 
should also be realized that the E modulus is very 
sensitive to a slight change in the ( P 2 )  value, so the 
agreement between theory and experiment is as good as 
could be hoped for. 

Although there is some experimental uncertainty, it is 
observed that the required amount of pre-elongation 
DRw: e to fit the influence of draw-down increases with 
increasing polymer concentration. This result suggests 
that the orientation due to the spinneret is determined not 
only by geometrical factors, as otherwise DRpr e would 
have been constant. The observed trend in fact suggests 
a certain degree of slippage, a reduction of the 
concentration leading to a reduction of DRpr e, as would 
be expected. Note also that for the experiments at 
different coagulation bath temperatures, only one value 
for DRy,. ~ was used, as is required by the association of 
DRpr e with the orientation due to the spinneret. From 
the discrepancy between the DRp,:e value (6) for the 
highest concentration and the value (8) that seemed to 
be most appropriate for the whole bath temperature 
series, it is observed that the fitting process to obtain the 
maximum modulus or ( P 2 )  is somewhat insensitive to 
variation of DRpr e. 

DISCUSSION 

The orientation due to elongational flow has been 
discussed previously by Kenig 13, who used a relation of 
the form 

tan 0 = a -p tan 0o (22) 

where a is the draw ratio and 0 is the orientation angle. 
The exponent p is the 'orientability parameter' that 
describes to what extent the elongational flow has any 
effect. For an affine deformation (without slip), p is equal 
to 3/2. In practice a lower value was reported for a PPTA 
solution, ~ 0.6. This result suggested that the orientation 
process is less efficient than the affine deformation theory 
predicts. 

The apparent contradiction with the present model can 
be understood if it is realized that in our model 
orientation angles 0 = 0 cannot be reached, because of 
the limitation that the local molecular order cannot be 
influenced by external flow fields, i,e. the slow flow regime 
still operates. The affine deformation model is used only 
to describe the degree of director orientation. This means 
that from the present point of view the 'orientability 
parameter' is another way of expressing the fact that the 
local molecular order cannot be substantially influenced 
by the application of an external deformation. This is in 
agreement with the experimental observation that the 
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plateau value for the fibre modulus, for high draw ratio, 
is far lower than the aramid chain modulus of 240 GPa.  

In addition, it is noted that for the range of 
concentrations concerned here, the Doi Edwards 

rotational diffusion constant 4 Dr (see Appendix) is 
,~3.3 × 104s  -1  if for the effective rod length the 
persistence length Lp is taken. Any influence of external 
flow fields on the molecular (P2  > value is expected for 
deformation rates greater than Dr only, i.e. when the 
so-called dimensionless shear or elongation rate is of the 
order of I or more. The applied shear rate in the spinneret 
is of this order of magnitude ( ~ 1.5 × 105 s -  1 at the wall, 
and 9.2 × 104S -1 on average);  however, the applied 
strain is not very large. The elongation rate in the air 

gap is well below Dr, in the region of 600 s -  1. This means 
that the shear-induced molecular orientation due to the 
spinneret (if any) would have enough time to relax to 
the equilibrium (P2  >. For  this reason it is felt that the 
present 'slow flow' approach is justified for the spinning 
conditions used. 

It is noted that this theoretical result, although pleasing 
from the present point of view, is to a certain extent 
meaningless, as the value obtained for D r in the 
Doi Edwards theory depends strongly on the choice of 
the value of L. (This is due to the L 3 term in Dro, in 
combination with the (vL 3 )-  2 term in the expression for 

Dr, leading to an L-7  dependence in all, at a constant 
weight fraction of polymer;  see the equations in the 
Appendix.) If instead of the persistence length the 
contour length, which is a reasonable upper bound for 
L, is chosen, the Do i -Edwards  rotation diffusion 
constant is ~ 0.25 s -  1. Alternatively, if for L, as a lower 
bound, the deflection length Ld as introduced by Odijk 14 
is chosen, the rotational diffusion constant is unreason- 
ably high. (Using L d =- Lp/Ct .~ L p ( l  - <P2>)/3  = 
0.5 nm gives a negative value for Dro, as L < b. Using 

the approximate expression Dro = 4 k s T / = q , L  3, D r 

becomes ~ l016 s - 1 . )  

The values of Dr given above show that, although it 
is perfectly reasonable to assume that external flows do 
strongly influence the degree of molecular orientational 
order with respect to the director, there is also an equally 
good case to be made for the slow-flow approximation 
in the high-concentration regime. Here the slow-flow 
approximation has been chosen, as it enormously 
simplifies the problem. In addition it is felt that the 
comparison of the slow-flow results with the experimental 
data on the fibre modulus is a reasonable test of the 
validity of the slow-flow approximation for concentrated 
aramid solutions. From the agreement of the present 
model with the experimental results it is concluded that 
it is possible to explain the observed influence of polymer 
concentration, coagulation bath temperature, and 
draw-down on the modulus of aramid fibres by using a 
combination of molecular orientational order with 
respect to the local director and affine deformation of 
the director field itself. 

As regards the affine deformation model, it is conceded 
that the use of the pre-draw factor is somewhat 
ambiguous at present. However, the use of the affine 
deformation model to describe the effect of draw-down 
in the air gap seems acceptable. To test this part  of the 
model experimentally, synchrotron X-ray scattering 
experiments in an elongational flow spinning geometry 
are planned for the near future. 

It would seem worthwhile to try to take the affine 
deformation model further, viz. to other geometries, so 
as to be able to analyse the influence of the spinneret 
geometry. MacMillan 16 has analysed the stability of the 
director field under affine deformation for a variety of 
cases, including of course also the simple shear and 
elongation geometry. Unfortunately no expressions were 
given for the 'director order parameters ' ,  so the relation 
to mechanical properties cannot be established without 
some additional effort. 

Considering the various approximations that are used, 
it may be wondered to what extent the present approach 
has any predictive power. It should be realized that in 
practice with a dry-jet wet spinning process, a draw ratio 
in the air gap of ~ 6 or more will often be applied. For 
these DRair.gap values the fibre modulus is to a large extent 
determined by <P2 >" By simply combining equations 
(12), (20) and (21), a reasonable first-order estimate for 
the fibre modulus can be obtained that is often quite 
close to the experimental value (say within 20 G P a  ). This 
holds true not only in the concentrated regime, as 
described here, but also for much more dilute solutions 
close to the isotropic phase. As an example, a DABT 
solution spun at 9 wt% and 5°C leads to aramid fibres 
with a modulus of ~35  GPa.  Using equations (12), (20) 
and (21), a predicted modulus of 36.6 G P a  is found. To 
use equations (12) for predicting the modulus of fibres 
spun from other lyotropic systems, only one experimental 
value for T,i at given concentration has to be measured 
to calibrate the absolute temperature scale of the model. 
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A P P E N D I X  

The Do i -Edwards  rotational diffusion constant for 
concentrated solutions of rods is given by 4 

D r  = flDr*(V*/V)2( 1 - -  $2)  - 2  = f lDro(vL3) -2 (  1 - -  $2)  2 
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where v is the number fraction of rods of length L, S is 
the ( P 2 )  order parameter (at rest), fl is a correction 
factor of the order of 103, and Dro is the rotational 
diffusion constant for a dilute solution, given by 

Dro = 
3kBT( ln(L/b)  - y) 

g~s L3 

where L / b  is the aspect ratio of the rod, ~ is a 
correction term (,~0.8), r/S is the solvent viscosity 
(5 .3mPas  for 99%/80°C H2SO4), and T is the 
temperature. Using for the L the persistence length of 
29nm and b = 0 . 6 6 n m ,  D r o = l . 1  x l05s -1. For a 
concentrated aramid solution with ( P 2 )  ~ 0.95 (at rest), 
this gives D r = 3.3 x 104 s- 1. 
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